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Abstract

Representing high-volume and high-order data is
an essential problem, especially in machine learn-
ing field. Although existing two-dimensional (2D)
discriminant analysis achieves promising perfor-
mance, the single and linear projection features
make it difficult to analyze more complex data.
In this paper, we propose a novel convolutional
two-dimensional linear discriminant analysis (2D
LDA) method for data representation. In order to
deal with nonlinear data, a specially designed Con-
volutional Neural Networks (CNN) is presented,
which can be proved having the equivalent objec-
tive function with common 2D LDA. In this way,
the discriminant ability can benefit from not only
the nonlinearity of Convolutional Neural Networks,
but also the powerful learning process. Experiment
results on several datasets show that the proposed
method performs better than other state-of-the-art
methods in terms of classification accuracy.

1 Introduction

Linear discriminant analysis (LDA) is a classical method for
dimension reduction and classification. It is commonly used
in machine learning and pattern recognition, which shows
promising performance in applications such as face recog-
nition [Belhumeur et al., 1997]. By maximizing the trace
of between-class scatter matrix and minimizing the trace of
within-class scatter matrix, the classical LDA aims to find the
optimal projection vectors.

The main idea of LDA is simple and effective. The classi-
cal LDA, however, demands that input data should be repre-
sented by vector. Such constraint is a significant drawback to
express complex data. For example, image, the most widely
used 2D data format, isn’t suitable for vector representation.
In order to tackle this problem, one kind of method utilizes
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the classical LDA combined with matrix-vector transforma-
tion [Ma et al., 2013][Ren et al., 2012]. However, what
this transformation brings is huge computational expense.
In order to process 2D data directly, many method based
on 2D data format [Li and Yuan, 2005][Yang et al., 2004]
is proposed. Another way to address this problem is two-
dimensional linear discriminant analysis (2D LDA) [Ye et al.,
2004][Ren et al., 2015], which removes matrix-vector trans-
formation. Using the original 2D-structure data format, 2D
LDA can preserve more co-related information which leads
to better performance.

With the wave of artificial intelligence, deep version of
many classical methods have shown its power again. In re-
cent years, some methods related to classical PCA [Chan et
al., 2014] and LDA [Dorfer et al., 2015] achieved promising
performance in combination with deep neural networks. The
purpose of these methods is to utilize the learning capacity of
networks and the effective optimization tool, namely stochas-
tic gradient descent and its variants. However, the combina-
tion of classical LDA and deep neural networks means com-
plex network construction and gradient calculation.

In this paper, we propose a convolutional 2D LDA method
that aims to solve above the limitation for high-volume and
high-order data nonlinear dimensionality reduction. Differ-
ent from [Dorfer et al., 2015], we employ a special Convo-
lutional Neural Networks (CNN) to optimize LDA objective
function instead of maximizing eigenvalues of scatter matrix.
The key novelty of our method is that using such CNN struc-
ture makes the optimization easier than others and gains bet-
ter performance. Meanwhile, the whole networks is a non-
linear 2D dimensionality reduction method which optimizes
classification and dimensionality reduction networks simulta-
neously.

2 Related Work
2.1 Revisiting LDA

The classical LDA aims to project the original data into a
lower-dimensional space. Meanwhile, the projection should
separate the lower-dimensional data. In order to calculate the
degree of separation, scatter matrix of projected data is em-
ployed. We denote the original data as X € R'*™, which
contains c classes m = |71, 72, ..., 7). Suppose the projec-
tion is defined by W € R!*¢. The transformation of classical



LDA is y; = WTx;, where z; € R'*! is a sample from the
original data. In order to find the optimal projection matrix
W, we use between-class scatter matrix Sy and within-class
scatter matrix S,, which are defined as follows:

Sp =Y ni(M; — M)(M; — M)",
i=1
Sw=Y_ > (X; = M)(X; — My)",
i=1 X;em;
where n; is the number of samples in class 7;, IV is the num-

1
ber of whole samples, M; = P > X,em, X is the average

value of class m; and M = N 2ie1 2ox,en, Xj is the aver-

age value of the whole dataset.
Accordingly, the transformed lower-dimensional between-
class and within-class scatter matrix can be:

Sy = WIS, W,

Sw=WTS,W.
Based on the above condition of separation, the optimal W
should be:

|5
max j—--.
V|
In [Hou et al., 2012], the above function can be rewritten as
follow:

max Tr((5,) ™" Sh).
where T'r(-) denotes the matrix trace operation.

2.2 2DLDA

The major differences between LDA and 2D LDA is the
data representation format. In order to project 2D-format
data, 2D LDA employs a set of transformation matrices.
We denotes U, V as the transformation matrices and X =
[X1, X2, ..., X,] as the input data, where X; € R™*". In
this way, the projected between-class and within-class scatter
matrix can be rewritten as:

Sp =Y nUT(M; — M)VVT(M; — M)TT,
i=1

C

Sw=Y_ > U"(X; - M)VVT(X; — M;)"U.
i=1 X €em;
Once the scatter matrix of 2D-format data is determined, the
same objective function as classical LDA can be formulated.
What make difference between objective function of classical
LDA and 2D LDA is the transformation matrices. Hence, the
optimization target would be a set of transformation matrices
U V:
&

SU}

As mentioned in [Hou et al., 2012], the objective function is
defined as follows:

— 1
%%;(TT((SM) Sh).

max
U,V ‘

2.3 Regularized LDA

In the procedure of solving LDA problem, calculating the in-
verse matrix of within-class scatter matrix is essential. How-
ever, the within-class scatter matrix S,, might be singular
under certain circumstances such as tiny sample set of data.
This property will make the problem hard to solve. In or-
der to avoid singularity of within-class scatter matrix, regu-
larization terms are added to common LDA problem. Mean-
while, such regularization terms can be helpful to prevent
over-fitting problem.

In [Mahanta et al., 2013], an iterative regularized MVLDA
is proposed. They use estimates of scatter matrices as regu-
larization terms. The estimates of within-class scatter matrix
can be obtained iteratively:

R _
Swr =+~ D> (X = My)Syte(X; — M),

=1 XJ'ETU

j— _
Swr= 57— D> (X = M) SR (X — M),
=1 X]' €em;
The estimates of between-class scatter matrix are defined as:

Spr =Y _ni(M; = M)(M; — M)",
i=1
1 C
Spr = —— s(M; — M)YT(M; — M).
BR TT‘(SBL) ;n( 7 ) ( 7 )
Based on these estimates, the regularized scatter matrices are
defined as:
S = (1 = 7)Sw + YuwSy,
Sy = (1 =7)Sy +S;,
where S5 = Sywr ® Swr and S; = Spr ® SprL.
Another simple regularized LDA utilizes identity matrix to
avoid singularity of within-class scatter matrix. The objective
function of LDA can be formulated in a unified format:

max Tr((Sw) 1 Sy).

If we add an identity matrix to within-class scatter matrix, the
whole item will meet the full rank condition. The regularized
objective function can be:

max Tr((g; + 7[)_1/52).
2.4 Deep Version of LDA

In [Andrew et al., 2013], a Canonical Correlation Analysis
(DCCA) method based on deep neural networks is proposed.
DCCA shows remarkable results in simultaneously recorded
acoustic and articulatory speech data. In [Dorfer ef al., 2015],
another kind of deep linear discriminant analysis is proposed,
which is used for image classification. The original Categor-
ical Cross Entropy is replaced with summation of eigenval-
ues, which has the same objective function with common 2D
LDA.

3 Convolutional 2D LDA

In this section, we expound on the proof of convolutional 2D
LDA and it’s corresponding CNN construction.
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Figure 1: Network construction in different stages. During the training stage, the optimization layer is added to the top of the whole networks.
When we deploy the networks, the optimization layer is excluded. The top of whole networks would be the optimized LDA output.

3.1 LDA Based on Nonlinear Projection

Our goal is to find a 2D nonlinear projection that can
be used for dimensionality reduction. We denotes D =
[D1, Da, ..., D,] as the input data and ¢ (-) as nonlinear pro-
jection. As long as the projected data d; = (D;) max-
imizes the trace of between-class scatter matrix and mini-
mizes the trace of within-class scatter matrix, we can regard
such projection as nonlinear 2D LDA dimensionality reduc-
tion method.

Different from classical LDA or 2D LDA, what nonlinear
projection brings is better representation performance in the
projected subspace. However, an essential and difficult bar-
rier is the optimization of nonlinear projection. In order to
tackle this problem, we use a special CNN structure to op-
timize the whole networks. This kind of optimization is the
key novelty of our method.

3.2 LDA in Network

Using CNN to realize dimension reduction is our basic idea.
Assume that the nonlinear projection defined by CNN is
z = g(A) € R™*!, in which z is a m-dimensional vec-
tor indicating dimension reduction output, g(-) denotes CNN
that performs projection and A represents the original data.
If the optimal nonlinear projection ¢*(-) maximizes the trace
of between-class scatter matrix and minimizes the trace of
within-class scatter matrix after projection, the optimal non-
linear projection g*(-) shares the same goal with the classical
LDA

We denote the output of CNN as X =
[9(A1),9(A2),...,9(Ay)] € R™ ™ and the One-Hot
Encoding label of data as ¥ € R"*°. Following the
realization of regularized LDA, which is helpful to prevent
calculation of singular matrix and over-fitting, the objective
function is defined as:

maxTr((St+'yI)_1Sb), (1)
g
where
S, =XHXT, 2
Sy =XHYYTY)"'vTHXT, 3)

1
H=1--11". 4)
n
Due to the complicated structure of CNN g(-), it is tough to
optimize this objective function. Fortunately, we can rewrite
the objective function in another way which can be easily op-
timized:

max Tr((S; +~I)"'Sp)
g

~ 12
in || XTW + 1" - 7| w3 5
o min [XTW+ W, ®)
where

1

Y =YYTY) 2. (6)
proof: The equivalence of Eq.1 and Eq.5 can be proved by
Lagrange multiplier method. Suppose we have obtained the
optimal W and b in Eq.5, the result of substituting them into
Eq.5 should be equal to Eq.1. Hence, the optimal solution
for b can be obtained by setting the derivative of Eq.5 with

respect to b to zero. Thus, we have:

1

b= E(?Tl —-wTX1). (7)
Substituting b into Eq.5:
112
min HXTW F1T - YH +y W[5
9, W,b F
12
@minHHXTW—HYH Yy WA ®
9,W F
Setting the derivative of Eq.8 with respect to W' to zeros:
W= (XHXT +~I)"'XHY. )

Substituting W into Eq.8:

~ 112
in || XTW — HYH W
min H o T IWIE
S minTr(YTHY)-Tr(YTHXT(XHXT4~1) ' XHY)

)
(10)

S max Tr((S; +~vI)71Sy).
g



3.3 Network Construction

From the above theorem we can see that if we put a optimiza-
tion layer above the original CNN g(-) that receives dimen-
sion reduction results X and outputs X Tw + 16T, we would
be able to optimize W and b simultaneously.

Meanwhile, the optimal CNN g(+) in Eq.1 can be obtained
because Eq.1 shares the same optimal solution with Eq.5 in
such circumstances, which means that the dimensionality re-
duction networks can be optimized via the optimization layer.
Furthermore, the new added optimization layer can be used
for classification evaluation of dimensionality reduction per-
formance.

From the 5-layer networks LeNet-5 [Lecun et al., 1998] to
ResNet [He er al., 2016] which contains up to 1202 layers,
depth of neural network is becoming incredibly huge. The
purpose of our method, however, is to examine the effective-
ness of this kind of specially designed networks instead of
using the great generalization ability of deep networks. Thus,
we use two kinds of network structure to examine our method.
A simplified dimensionality reduction networks is employed
that contains two convolutional layers and one fully con-
nected layer to compare with traditional algorithms. A more
complex networks which contains three convolutional lay-
ers with batch normalization [loffe and Szegedy, 2015] and
one fully connected layer with dropout[Hinton et al., 2012] is
used to compare with other algorithms based on deep learn-
ing.

As mentioned in Eq.5, we use one single layer to perform
classification above the dimensionality reduction networks.
It converts the dimensionality reduction results into One-Hot
encoding label in class space, which can be regarded as clas-
sification networks. Meanwhile, this classification networks
is in charge of optimizing the dimensionality reduction net-
works. The loss of whole networks is defined as the Frobe-
nius norm of difference between classification and label, as
shown in Eq.5. Figure 1 illustrates the training and deploy
procedure. In order to optimize the whole networks, the ex-
tra optimization layer is added in the training stage. It can
be used as classifier and optimizer simultaneously. Once the
optimization of whole networks is finished, the optimization
layer can be excluded from original networks.

In this way, we can combine dimensionality reduction and
classification stage into a end-to-end networks, which shares
the same objective function with regularized 2D LDA. Ap-
parently, our method is a nonlinear 2D LDA method.

4 Experiment

In this section, we compare the proposed convolutional 2D
LDA with eight traditional algorithms, including LDA [Bel-
humeur et al., 1997], 2D LDA [Ye et al., 2004], 2D PCA
[Yang et al., 2004], Bilinear SVM [Pirsiavash et al., 20091,
S2D LDA [Inoue and Urahama, 2006], P2D LDA [Inoue
and Urahama, 2006], Tensor LPP [He e al., 2005] and CRP
[Chang et al., 2015]. Experiments are performed on two
handwritten digit datasets. We also compare our method with
other four algorithms based on deep learning, including NIN
[Lin et al., 2013], Maxout [Goodfellow et al., 2013], DeepC-
Net [Graham, 2014] and DeepLDA [Dorfer ef al., 2015]. In

addition, we provide detailed networks architecture and hyper
parameters settings used in our experiment.
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Figure 2: Example images in (a) CVL dataset and (b) USPS dataset.

4.1 Datasets and Experiment Setup

We use three datasets to conduct our experiments.

MNIST dataset: The MNIST dataset contains 60,000 ex-
amples used for handwritten digits recognition.

CVL dataset: The CVL dataset [Diem er al., 2013] is gen-
erated for the ICDAR2013 Handwritten Digit Recognition
Competition. There are 21,780 handwritten digit images in
this dataset. The size of each image is 32x32.

USPS dataset: The USPS dataset is used for light weight
handwritten digit recognition. It contains 9,298 handwritten
digit images in this database with the size of 16x16.

As mentioned in section 3.2, we adopt two kinds of net-
works with two and three convolutional layers, one fully con-
nected layer and it’s corresponding LDA classification and
optimization layer. In Table 1 we outline the architecture of
our model in detail. The whole networks is trained with mo-
mentum [Sutskever et al., 2013] and Adam [Kingma and Ba,
2014] SGD optimizer in TensorFlow[Abadi et al., 2016]. For
a more convincing result, all hyper parameters for different
datasets are identical. It is noteworthy that batch size is an
essential hyper parameter because lack of certain classes in
a mini-batch would make the weighted label Y meaningless.
The batch size is set to 100 and the learning rate to 0.0002.
The regularization weight -y is set to 0.0001.

Table 1: The architecture of the Convolutional 2D LDA Network.

stage simplified complex
3x3,64conv-BN-RELU
convl 3 2"3231\24:(“;0%)?;; 3x3,64conv-BN-RELU
2x2 Max-Polling
3x3,96conv-BN-RELU
conv2 3;;?:;;“:2%; 3x3,96conv-BN-RELU
2x2 Max-Polling
3x3,256conv-BN-RELU
conv3 1x1,256conv-BN-RELU
1x1,64conv-BN-RELU
fcl 64d 64d-Dropout(0.5)
optimization 10d 10d




Table 2: Classification accuracy of traditional algorithms and our method using 80% training data for each dataset.

Our method
Dataset LDA 2DPCA 2DLDA | S2DLDA | P2DLDA T-LPP B-SVM CRP
(simplified)
CVL(NN) | 90.2+1.6 | 90.64+1.5 | 91.14+1.4 | 92.4+1.5 | 92.8+1.3 | 93.1+1.3 | 93.4+1.5 | 94.7+1.3 96.6
CVL(SVM) | 87.3+1.5 | 87.7+1.7 | 88.2+1.4 | 89.3+1.1 | 89.9+1.1 | 90.3+1.5 | 93.44+1.5 | 91.5+1.3 96.6
USPS(INN) | 94.841.3 | 95.2+1.1 | 95.6+£1.2 | 96.44+1.4 | 94.54+1.2 | 95.1£1.1 | 96.2+1.4 | 96.840.9 97.9
USPS(SVM) | 93.1£1.6 | 93.5£1.5 | 93.84+1.1 | 94.1+1.2 | 943+1.8 | 94.7+1.4 | 96.24+1.4 | 95.6+1.3 97.9

Table 3: Classification accuracy of traditional algorithms and our method using 20 training data for each dataset.

Our method
Dataset LDA 2DPCA 2DLDA | S2DLDA | P2DLDA T-LPP B-SVM CRP
(simplified)
CVL(NN) | 63.7£1.3 | 64.1£1.8 | 66.7+1.2 | 67.3£1.3 | 60.2£1.7 | 65.2+1.9 | 70.9+1.6 | 74.2+1.1 72.1
CVL(SVM) | 67.9+1.3 | 68.3£1.4 | 69.2+1.6 | 68.6+1.7 | 58.3+1.7 | 69.1+1.4 | 70.9+1.6 | 79.2+1.5 72.1
USPS(INN) | 83.1+1.3 | 83.6+t1.4 | 84.5+1.8 | 85.6k1.2 | 74.7t1.5 | 79.5£1.4 | 86.6+1.8 | 89.2+1.4 90.2
USPS(SVM) | 83.841.8 | 84.2+1.9 | 85.841.5 | 86.84+1.9 | 80.8+1.3 | 81.8+t1.6 | 86.64+1.8 | 88.4t1.4 90.2

4.2 Experimental Results

Traditional Method

In this experiment, we use classification accuracy to compare
our algorithm with other eight methods, including LDA, 2D
LDA, 2D PCA, Bilinear SVM, S2D LDA, P2D LDA, Ten-
sor LPP and CRP. Two different classifiers are used in this
experiment which are SVM and 1-Nearest-Neighbor (INN).
Note that our method utilizes the extra optimization layer to
classify, instead of SVM or 1NN. Because the Bilinear SVM
itself is a classifier, we compare it with our method directly.
In order to evaluate the effectiveness of our method, three dif-
ferent sizes of training sets for both datasets are employed.

The experiment results using 80% training data for each
dataset are shown in Table 2. Our method outperforms other
eight methods in different datasets and classifiers. This result
shows that our method takes the advantages of deep neural
networks. Meanwhile, the effectiveness of our method can be
verified. When we use CVL dataset with SVM classifier, our
method outperforms classical 2D LDA by 8.9% in terms of
classification accuracy.

The experiment results using 20 training data for each
dataset are shown in Table 3. The CRP method achieves the
best results in CVL dataset using SVM and 1NN classifier.
The second best one is our method. In USPS dataset, our
method consistently performs better than the other method.
What we can see from this experiment is that the CNN starts
to suffer from Insufficient data.

The experiment results using 10 training data for each
dataset are shown in Table 5. With the decrease of train-
ing data, all the methods show worse results. Our method
achieves the 3rd place in CVL dataset using INN classifier.
When it comes to SVM classifier, our method shows barely
satisfactory results. In USPS dataset, our method achieves
the 2nd place compared with other algorithms. Although the

number of training data is extremely small, our method still
outperforms 2D LDA by 10.8% in USPS dataset using INN
as classifier.

Deep Learning Method

In this experiment, we use classification accuracy to compare
our algorithm with several deep learning method in MNIST
dataset, including NIN, Maxout, DeepCNet, DeepLDA. Note
that we use the simplified and the complex model to compare.
In Table 4, we can observe that our method achieves promis-
ing results. Although our simplified version method shows
poor performance compared with other method, we can still
say that accuracy of 99.2% is not a bad result in consideration
of its structure.

Table 4: Classification accuracy of deep learning algorithms.

Method Classification accuracy
NIN 99.53
Maxout 99.55
DeepCNet 99.69
DeepLDACCE 99.66
DeepLDA 99.68
Our method(simplified) 99.20
Our method(complex) 99.69

From the above experiments, we can observe that the pro-
posed method performs fairly good in rich data context. Com-
pared with classical 2D LDA, our method achieves better per-
formance in all of the datasets and classifiers. when dealing
with insufficient data, the proposed method still shows a sat-
isfactory result. Taking into account all these three experi-



Table 5: Classification accuracy of traditional algorithms and our method using 10 training data for each dataset.

Our method
Dataset LDA 2DPCA 2DLDA | S2DLDA | P2DLDA T-LPP B-SVM CRP
(simplified)
CVL(INN) | 47.3+1.4 | 479415 | 50.3+1.8 | 51.9+1.5 | 469+1.4 | 55.1+1.6 | 642+19 | 67.3+1.3 55.2
CVL(SVM) | 56.8+1.5 | 57.1£1.6 | 579419 | 519414 | 48.4+1.3 | 66.9+1.6 | 64.24+19 | 68.3+1.5 55.2
USPS(INN) | 68.54+1.7 | 69.2+1.5 | 71.8+1.4 | 71.24+1.6 | 64.84+19 | 76.7+1.6 | 79.4+1.9 | 84.4+1.5 82.6
USPS(SVM) | 73.4+1.7 | 744£1.9 | 77.3+£1.3 | 79.2+1.8 | 73.9+1.4 | 782415 | 79.4+19 | 84.3+1.3 82.6

ments, we can say that our method achieves a promising per-
formance.

4.3 Discussion

It is interesting to see that our method gets a more satisfying
performance in rich data context compared with insufficient
data condition. This drawback might be caused by three rea-
sons.

First, according to Eq.5, the optimal dimensionality reduc-
tion networks can be obtained with optimal W and b. With
insufficient data, the final dimensionality reduction networks
is optimized with non-optimal W and b.

Second, the over-fitting problem in deep neural networks
would be serious when we use small dataset. In Table 5, the
whole training dataset contains only 100 samples while deep
neural networks needs a large number of data.

The last reason is the training trick. All of the experiments
are conducted with the same hyper parameters. If the hyper
parameters are adjusted for insufficient data, the classification
accuracy would be higher. In Table 6 and Table 7, the hyper
parameters adjusted for insufficient data lead to a better per-
formance. All we have done is setting the learning rate higher
to overcome the over-fitting problem. The our method™ in
Table 6 and Table 7 uses learning rate of 0.0004 and 0.0006
respectively. The learning rate used in our original experi-
ment is 0.0002.

Table 6: Classification accuracy with different hyper parameter us-
ing 20 training data. Best method means best of other eight tradi-
tional algorithms.

Our method | Our method ™
Dataset Best
(simplified) (simplified)
CVL(INN) | 7142+t 1.1 72.1 75.3
CVL(SVM) | 792+ 1.5 72.1 75.3
USPS(INN) | 89.2+ 14 90.2 91.4
USPS(SVM) | 884+ 1.4 90.2 91.4

When we increase the number of training data from 100
to 200 in CVL dataset, the average classification accuracy
improvement of our method and CRP are 16.9% and 8.9%.
When we use more data, the average classification accuracy
improvement of our method and CRP are 24.5% and 16.4%.

Such phenomenon can be seen in USPS dataset as well. Com-
pared with CRP algorithm that shows great performance us-
ing few data, our method shows much faster performance
growth with the increasement of training data number.

The experiment results show two major features of our
method. One of them is that our method need more data than
other methods. Another one is that better performance can be
achieved with sufficient data. As a result of CNN structure,
this kind of features are obvious.

Table 7: Classification accuracy with different hyper parameter us-
ing 10 training data. Best method means best of other eight tradi-
tional algorithms.

Our method | Our method *
Dataset Best
(simplified) (simplified)
CVL(NN) | 67.3+1.3 55.2 62.9
CVL(SVM) | 68.3 = 1.5 55.2 62.9
USPS(INN) | 844415 82.6 86.2
USPS(SVM) | 84.3+1.3 82.6 86.2

5 Conclusion

In this paper, we have proposed a convolutional 2D LDA
method for nonlinear dimensionality reduction. The difficult
problem of optimization is solved by a clever equivalence
of two objective functions. The proposed method employs
a two stage end-to-end CNN to realize dimensionality reduc-
tion. Effectiveness of such structure has been proved with two
different networks. Our convolutional 2D LDA method out-
performs the classical LDA in all experiment settings. With
sufficient data, our method shows remarkable dimensionality
reduction ability.
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